SmartNFR

Smart coating systems for process control and increased wear resistance in processing of **Natural Fibre Reinforced** polymers

Fraunhofer Institute for Surface Engineering and Thin Films
Dr.-Ing. Saskia Biehl
saskia.biehl@ist.fraunhofer.de
Germany
SmartNFR

Project term-time: 01.06.2016 - 31.05.2018

Project partners:

Partners from Czech Republic:
Tomas Bata University
nam. T.G. Masaryka 5555, 76001 Zlin

Partners from Germany:
Fraunhofer Institute for Machine Tools and Forming Technology (IWU),
Reichenhainer Straße 88, 09126 Chemnitz

Fraunhofer Institute for Surface Engineering and Thin Films (IST),
Bienroder Weg 54E, 38108 Braunschweig
SmartNFR

Aim

Rising requirements on polymer injection molding in view to
- process of modified polymers (e.g. natural fibre reinforced polymers)
- high cost pressure
- rising efficiency in production

The process with modified polymers in injection molding causes
- rising wear
- plate-out on active parts of machinery
- worse situation of the molding of modified polymers

Development of multifunctional coating systems
SmartNFR

Kick off meeting of the project in Chemnitz: 22nd of June 2016 at the IWU

First meeting in Zlin; 15th of September 2016 at the Tomas Bata University
SmartNFR

First meeting in Zlin; 15th of September 2016 at the Tomas Bata University

Fabrication of pellets and filaments

Polymer injection molding machine
SmartNFR

Concepts for wear resistant sensor integration
1. Into the extruder: Development of an extrusion die
SmartNFR

Concepts for wear resistant sensor integration

1. Into the extruder: Development of an extrusion die

Two load sensor structures
One temperature sensor structure
SmartNFR

Concepts for wear resistant sensor integration

2. Into the mold: Development of an injection molding die

Mold for the fabrication of polymer-nature fiber filled flooring

Sensor die integration into this area

“wooden-like” tiles
Concepts for wear resistant sensor integration

2. Into the mold: Development of an injection molding die

Integration of sensor dies into three areas of the mold

left side

right side
SmartNFR

Multifunctional layer concept

1. piezoresistive hydrogenated carbon layer DiaForce®
2. electrode structures
3. Si and O modified carbon intermediate layer
4. Cr-meander
5. insulating and wear resistant top layer system

steel substrate
Si and O modified carbon layer as top layer d=3 µm + wear resistant thin film
Cu contacts d=1.5 µm
Cr-meander, conductive path d=0.2 µm
Intermediate layer d=1 µm
electrode structure d=0.2 µm
piezoresistive hydrogenated carbon layer DiaForce® d=6 µm
substrate

+ wear resistant thin film: TiN, TiAlN, WC, …
SmartNFR

First layer system on flat samples

Load sensor structures

Temperature sensor structures

Preparation of the coated substrate for the scanning microscope analysis
1. conductive path between two insulating layers
2. electrode in direct touch with the DiaForce® layer
This project is funded by the German Federal Ministry of Economic Affairs and Energy.

- AiF – German Federation of Industrial Research Associations, Germany

&

Ministry of Industry and Trade, Czech Republic

- Agentura pro podnikání a Inovace, Czech Republic